Лекция 12. Сложное движение
Обзор: Плоскопараллельное движение твердого тела. Определение скоростей точек плоской фигуры. Мгновенный центр скоростей (МЦС) при плоскопараллельном движении. Сложное движение точки. Определение скоростей и ускорений точек при сложном движении. Свойства ускорения Кориолиса
Бесплатно
Просмотр: эта статья прочитана 9239 раз

pdf

Краткий обзор
Полностью материал скачивается выше, предварительно выбрав язык

 Плоскопараллельное движение

 Плоскопараллельное движение Плоскопараллельным или плоским движением твердого тела называется движение, при котором все точки тела движутся в плоскостях, которые параллельны некоторой недвижимой плоскости (базовой).

 Изучение плоского движения абсолютно твердого тела сведится к изучению одного сечения плоской фигуры, которое определяется движением трех  точек, которые не лежат на одной прямой.

 Задав угол поворота тела вокруг прямой, которая проходит через полюс А перпендикулярно к плоскости сечения, получим закон плоскопаралельного движения

 Плоскопараллельное движение твердого тела состоит из поступательного,при котором точки тела движутся вместе с полюсом, и вращательного вокруг полюса.

 Основные кинематические характеристики плоского движения тела:

  • скорость  и ускорение  поступательного движения полюса,
  • угловая скорость  и угловое ускорение  вращательного движения вокруг полюса.

 Траектория произвольной точки плоской фигуры определяется расстоянием от точки до полюса А и углом вращения вокруг полюса.

Определение скоростей точек плоской фигуры

    Скорость произвольной точки  равна геометрической сумме скорости точки, которая принята за полюс, и вращательной скорости данной точки в ее вращательном движении вместе с телом вокруг полюса.

 Модуль и направление скорости находится построением соответствующего параллелограмма.

Мгновенный центр скоростей (МЦС)

Мгновенный центр скоростей (МЦС ) - точка, скорость которой в данный момент времени равна нулю.  МЦС рассматривают в качестве полюса.
 

  1. Скорость произвольной точки тела, которая принадлежит плоской фигуре, равняется ее вращательной скорости вокруг мгновенного центра скоростей. Модуль скорости произвольной точки А равняется произведению угловой скорости тела на длину отрезка от точки до МЦС.  Вектор   направлен перпендикулярно к отрезку от точки до МЦС в направлении вращения тела
  2.  Модули скоростей точек тела пропорциональны их расстояниям до МЦС

 Случаи определения мгновенного центра скоростей
 

  1. Если известны скорость одной точки тела, угловая скорость вращения тела, то для нахождения  МЦС (Р) необходимо повернуть вектор скорости точки в сторону вращения на 900 и на найденном луче отложить отрезок АР
  2. Если скорости двух точек тела параллельны и перпендикулярны прямой, которая проходит через эти точки, то МЦС находится в точке пересечения этой прямой и прямой, которая соединяет концы векторов скоростей
  3.  Если известны направления скоростей двух точек тела и их направления не параллельны, то МЦС находится в точке Р пересечения перпендикуляров, проведенных к скоростям в этих точках
  4. Если колесо катится по недвижимой поверхности без скольжения, то МЦС (Р) находится в точке соприкосновения колеса с недвижимой поверхностью

 В случаях 2 и 3 возможные исключения (мгновенно поступательное движение или мгновенный покой).

Плоскопараллельное движение можно считать сложным движением

 Сложное движение точки

 Сложное движение точки - движение, при котором точка одновременно принимает участие в нескольких движениях.

 Относительное движение - движение относительно подвижной системы отсчета.

 Переносное движение - движениет подвижной системы отчета (переносящей среды)  вместе с точкой относительно неподвижной системы отсчета.

 Абсолютное движение - движение точки относительно недвижимой системы отсчета
Абсолютное движение точки является сложным движением, т.к. состоит из относительного и переносного движений.

 При сложном движении абсолютная скорость точки равняется геометрической сумме ее относительной и переносной скоростей

Определение ускорений точки

 Абсолютное ускорение точки равняется геометрической сумме трех векторов: относительного ускорения, характеризующего изменение относительной скорости в относительном движении; переносного ускорения, характеризующего изменение переносной скорости точки в переносном движении, и ускорения Кориолиса, характеризующего изменение относительной скорости точки в переносном движении и переносной скорости в относительном движении.

 Ускорением Кориолиса точки называется двойное векторное произведение угловой скорости переносящей среды и относительной скорости точки.

Формат: pdf

Размер:

Язык: русский, украинский

Получить RSS Еще публикации по теме

Больше статей...

 На главную страницу

Оцените сайт

Примеры расчетов
Пример расчета прямозубой цилиндрической передачи
Пример расчета прямозубой цилиндрической передачи. Выполнен выбор материала, расчет допускаемых напряжений, расчет на контактную и изгибную прочность.

Пример решения задачи на изгиб балки
В примере построены эпюры поперечных сил и изгибающих моментов, найдено опасное сечение и подобран двутавр. В задаче проанализировано построение эпюр с помощью дифференциальных зависимостей, провелен сравнительный анализ различных поперечных сечений балки.

Пример решения задачи на кручение вала
Задача состоит в проверке прочности стального вала при заданном диаметре, материале и допускаемых напряжениях. В ходе решения строятся эпюры крутящих моментов, касательных напряжений и углов закручивания. Собственный вес вала не учитывается

Пример решения задачи на растяжение-сжатие стержня
Задача состоит в проверке прочности стального стержня при заданных допускаемых напряжениях. В ходе решения строятся эпюры продольных сил, нормальных напряжений и перемещений. Собственный вес стержня не учитывается

Применение теоремы о сохранении кинетической энергии
Пример решения задачи на применение теоремы о сохранение кинетической энергии механической системы

Определение реакций опор твердого тела
Исходные данные и примеры решения задачи Определение реакций опор твердого тела (задача С-2 из cборника заданий для курсовых работ по теоретической механике А.А. Яблонского)

Определение скорости и ускорения точки по заданным уравнениям движения
Пример решение задачи на определение скорости и ускорения точки по заданным уравнениям движения

Определение скоростей и ускорений точек твердого тела при плоскопараллельном движении
Пример решения задачи на определение скоростей и ускорений точек твердого тела при плоскопараллельном движении

Определение усилий в стержнях плоской фермы
Пример решения задачи на определение усилий в стержнях плоской фермы методом Риттера и методом вырезания узлов

Применение теоремы об изменении кинетического момента
Пример решения задачи на применение теоремы об изменении кинетического момента для определения угловой скорости тела, совершающего вращение вокруг неподвижной оси.


Учебники
А.А. Яблонский, В.М. Никифорова Курс теоретической механики, т.1 и 2
Курс теоретической механики для студентов высших учебных заведений в двух томах.

С.М. Тарг. Краткий курс теоретической механики
С.М. Тарг. Краткий курс теоретической механики. 10-е издание,1986 г.

Беляев Н.М. Сопротивление материалов
Учебник по сопротивлению материалов для студентов политехнических, транспортных, строительных, гидротехнических, энергетических и машиностроительных вузов

М.Н.Иванов, В.А. Финогенов - Детали машин
Учебник по дисциплине 'Детали машин и основы конструирования' в электронном формате. 12-е издание, исправленное, год издания 2008.

Н.Ф.Киркач, Р.А.Баласанян - Расчет и проектирование деталей машин Учебник по дисциплине Детали машин и основы конструирования в формате djvu

В.И.Анурьев. Справочник инженера конструктора Три тома cправочника инженера-конструктора. Приведены современные справочные сведения по расчету и конструкциям осей, валов,подшипников, муфт, механический передач, разъемных соединений. Материалы, допуски и посадки и др.

ГОСТ 19523-81 Двигатели трехфазные асинхронные короткозамкнутые серии 4А Выписка из ГОСТ 19523-81 Двигатели трехфазные асинхронные короткозамкнутые серии 4А мощностью 0,55 кВт до 15кВт, мощность, асинхронная частота вращения, геометрические размеры

ГОСТ 25347-82 «ЕСДП, поля допусков и рекомендуемые посадки» (СТ СЭВ 144-75) Настоящий стандарт распространяется на гладкие элементы деталей с номинальными размерами до 3150 мм и устанавливает поля допусков для гладких деталей в посадках и для несопрягаемых элементов.

ГОСТ 520-2002. Подшипники качения Стандарт устанавливает допуски на основные размеры и точность вращения подшипников и другие технические требования

Больше закачек...