Лекция 16. Расчет резьбовых соединений на прочность

Оглавление

Расчеты резьбы на прочность	2
Основные виды разрушения резьбы:	
Основные критерии работоспособности и расчета	2
Условие прочности резьбы по напряжением срезания:	2
Условие износоустойчивости ходовой резьбы по напряжением смятия:	2
Высота гайки и глубина завинчивания	3
Расчеты на прочность стрежня винта при различных видах нагружения	3
Стрежень винта нагружен только внешней растягивающей силой	3
Болт затянут, внешняя нагрузка отсутствует	4
Болтовое соединение нагружено силами, сдвигающими детали	4
Болт поставлен с зазором	5
Болт поставлен без зазора	5
Болт затянут, внешняя нагрузка раскрывает стык деталей	6
Расчетная (суммарная) нагрузка на болт:	6
Сила окончательной затяжки стыка от одного болта:	7
Условие нераскрытия стыка:	7
Условие прочности болта при статической нагрузке:	7
Расчеты прочности болта при переменной нагрузке	8
Эффект эксцентричного болта	8
Расчеты соединений, включающих группу болтов	8
Равнодействующая нагрузка перпендикулярна плоскости стыка и проходит через его центр тяжести	
Нагрузка соединения сдвигает детали в стыке	9
Болты поставлены без зазора	9
Болты поставлены с зазором	10
Фланцевое соединение валов.	10
Нагрузка соединения раскрывает стык деталей	11
Расчеты из условия нераскрытия стыка	11
Расчеты из условия отсутствия сдвига деталей стыка (проверочный)	12
Расчеты прочности болтов	12
Материалы	13
Попустимые цапрамения и запасы процности	1.4

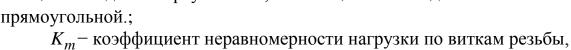
Расчеты резьбы на прочность

Основные виды разрушения резьбы:

- крепежных срезание витков;
- ходовых износ витков.

Основные критерии работоспособности и расчета

- для крепежной резьбы прочность, связанная с напряжениями среза т,
- для ходовой резьбы износостойкость, связанная с напряжениями смятия σ_{c_M} .


Условие прочности резьбы по напряжениям среза:

$$\tau = \frac{F}{\pi d_1 H K K_m} \leq [\tau] - \text{для винта};$$

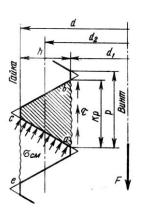
$$\tau = \frac{F}{\pi d H K K_m} \leq [\tau] - \text{для гайки},$$

где H — высота гайки или глубина завинчивания винта в деталь;

$$K = \frac{ab}{p} = \frac{ce}{p}$$
 — коэффициент полноты резьбы,

 $K \approx 0.87$ — для треугольной, $K \approx 0.5$ — для

 $K_m \approx 0,6...0,7$ — большие значения при $\frac{\sigma_{bcd}}{\sigma_{bc}} > 1,3$, где σ_{bcd} — предел


прочности материала винта, σ_{bc} предел прочности материала гайки. Это связано с тем, что увеличение относительной прочности материала винта позволяет использовать пластические деформации в резьбе для выравнивания распределения нагрузки по виткам резьбы.

При одинаковом материале винта и гайки по напряжениям среза рассчитывают только резьбу винта.

Условие износостойкости ходовой резьбы по напряжениям смятия:

$$\sigma_{CM} = \frac{F}{\pi d_2 h_Z} \leq [\sigma_{CM}],$$

где $z = \frac{H}{p}$ — число рабочих витков (например, число витков гайки).

Высота гайки и глубина завинчивания

Равнопрочность резьбы и стрежня винта является одним из условий определения высоты стандартных гаек.

$$\tau \approx 0.6\sigma_T$$

$$\frac{F}{\pi d_1 HKK_m} = 0.6 \frac{F}{\frac{\pi d_1^2}{4}}$$

При $K \approx 0,87$ и $K_m \approx 0,6$, для стандартных нормальных гаек получаем $H \approx 0,8d_1\,.$

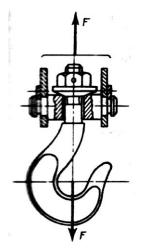
Кроме нормальных, стандартом предусмотрены высокие $H \approx 1,2d_1$ и низкие $H \approx 0,5d_1$ гайки.

Так как $d > d_1$, прочность резьбы для нормальных и высоких гаек превышает прочность стрежня винта. Из тех же соображений устанавливают глубину завинчивания винтов и шпилек в детали:

для стали $H_1 \approx d$,

для чугуна и силумина $H \approx 1,5d_1$.

Стандартные высоты гаек и глубина завинчивания исключает необходимость расчетов на прочность резьбы стандартных крепежных деталей.


Расчеты на прочность стрежня винта при различных видах нагружения

Стрежень винта нагружен только внешней растягивающей силой

Опасное сечение — сечение, ослабленное резьбой. Площадь сечения приблизительно оценивают по внутреннему диаметру резьбы d_1 .

Условие прочности по напряжениям растяжения в стрежне:

$$\sigma = \frac{4F}{\pi d_1^2} \le [\sigma].$$

Болт затянут, внешняя нагрузка отсутствует

Пример: болты для крепления ненагруженных герметичных крышек и люков корпусов машин. Стрежень болта растягивается осевой силой F_{3am} , возникающей от затяжки болта, и закручивается моментом сил в резьбе T_p .

Напряжение растяжения от F_{3am}

$$\sigma = \frac{4F_{3am}}{\pi d_1^2} \le [\sigma].$$

Напряжение кручения от момента T_p

$$\tau = \frac{T_p}{W_{\rho}} = \frac{0.5F_{3am}d_2tg(\psi + \varphi)}{0.2d_1^3}.$$

Необходимое значение силы затяжки болта

$$F_{3am} = A\sigma_{cM}$$
,

где A — площадь стыка деталей, приходящаяся на один болт,

 $\sigma_{c_{M}}$ — напряжение смятия в стыке деталей, значения выбирают из условия герметичности.

Прочность болта определяется по эквивалентным напряжениям:

$$\sigma_9 = \sqrt{\sigma^2 + 3\tau^2} \le [\sigma].$$

Для стандартной метрической резьбы

$$\sigma_9 \approx 1.3\sigma$$
.

Условие прочности затянутого болта при отсутствии внешней нагрузки:

$$\sigma_{\mathfrak{I}} = \frac{1.3F_{3am} \cdot 4}{\pi d_1^2} \leq \left[\sigma\right].$$

Болты M10...M12 можно разрушить при некачественно выполненной затяжке. Болты M6 разрушаются при силе 45H, M12 при силе 180H, в среднем и тяжелом машиностроении не рекомендовано применять болты меньшие M8.

Болтовое соединение нагружено силами, сдвигающими детали

Условие надежности соединения – отсутствие сдвига деталей в стыке.

Болт поставлен с зазором

Внешняя нагрузка F уравновешивается силами трения в стыке, образованными от затяжки болта.

Условие отсутствия сдвига деталей из условия равновесия детали 2:

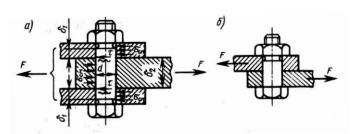
$$F \le iF_{Tp} = iF_{3am}f$$

ИЛИ

$$F_{3am} = \frac{KF}{if},$$

где i — число плоскостей стыка деталей;

f — коэффициент трения в стыке ($f \approx 0,15...0,20\;$ для сухих чугунных и стальных поверхностей);


K — коэффициент запаса (K = 1,3...1,5 при статической нагрузке, K = 1,8...2 при переменной нагрузке).

Прочность болта:

$$\sigma_9 = \frac{1.3F_{3am} \cdot 4}{\pi d_1^2} \le \left[\sigma\right].$$

В соединении, в котором болт поставлен с зазором, внешняя нагрузка не передается на болт. Поэтому болт рассчитывается только на статическую прочность по силе затяжки даже при переменной нагрузке (влияние переменной нагрузки учитывается повышением коэффициентов запаса).

Болт поставлен без зазора

В этом случае отверстие калибруют разверткой, а диаметр стрежня болта выполняют с допуском, обеспечивающим посадку без зазора. При

расчетах силы трения в стыке не учитывают, потому что затяжка болта не обязательна (болт можно заменить штифтом). Стрежень болта рассчитывают по напряжениям среза и смятия.

Условие прочности по напряжениям среза:

$$\tau = \frac{4F}{\pi d^2 i} \le \left[\tau\right],$$

где i — число плоскостей среза.

Расчеты на смятие проводят по условным напряжениям.

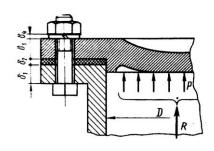
Условие прочности по напряжениям смятия:

для средней детали

$$\sigma_{\scriptscriptstyle CM} = \frac{F}{d\delta_2} \leq [\sigma_{\scriptscriptstyle CM}],$$

для крайней детали

$$\sigma_{\scriptscriptstyle CM} = \frac{F}{2d\delta_1} \le [\sigma_{\scriptscriptstyle CM}].$$


Расчеты выполняют по самому большому $\sigma_{c_{\mathcal{M}}}$, а допускаемые напряжения определяют по наиболее слабому из материалов болта или детали.

Установка болта с зазором

- дешевле (не нуждается в точных размерах);
- условия работы хуже (расчетная нагрузка превышает внешнюю нагрузку; вследствие нестабильности коэффициента трения и тяжести контроля затяжки робота таких соединений при нагрузке сдвига недостаточно надежная).

Болт затянут, внешняя нагрузка раскрывает стык деталей

Пример: болты для крепления крышек резервуаров, нагруженных давлением жидкости или газа. Затяжка болтов должна обеспечивать герметичность соединения или нераскрытие стыка под нагрузкой.

После приложения внешней нагрузки к затянутому соединению болт дополнительно растягивается на некоторую величину Δ , а

деформация сжатия деталей уменьшается и эту ту же величину.

Расчетная (суммарная) нагрузка на болт:

$$F_P = F_{3am} + F_{\delta},$$

где F_{3am} — сила затяжки болта;

 $F_{\tilde{0}} = \chi F$ — приращение нагрузки на болт,

где $F = \frac{R}{z}$ — внешняя нагрузка соединения, приходящаяся на один болт;

$$\chi = \frac{\lambda_{\partial}}{\lambda_{\overline{\partial}} + \lambda_{\partial}}$$
 — коэффициент внешней нагрузки, учитывающий

приращение нагрузки на болт в зависимости от силы F,

 $\lambda_{\tilde{o}}$ — податливость болта, равная его удлинению при единичной нагрузке;

 λ_{∂} — суммарная податливость деталей.

Сила окончательной затяжки стыка от одного болта:

$$F_{cm} = F_{3am} - (1 - \chi)F.$$

Достаточная предварительная затяжка F_{3am} , которая обеспечивает нераскрытие стыка деталей, является условием надежности и герметичности соединения.

Условие нераскрытия стыка:

$$F_{cm} > 0$$
.

Факторы, влияющие на нераскрытие стыка:

- качество обработки поверхности (для ответственных деталей применяют шлифование);
- число поверхностей стыка (чем больше поверхностей стыка, тем хуже);
- качество поверхности и точность резьбы (грубая резьба сминается и уменьшает силу затяжки);
- надежность способа стопорения;
- качество прокладок (упругие прокладки лучше сохраняют затягивание в стыке).

Таким образом, целесообразно сильно затягивать соединения, особенно при переменных нагрузках. Принимают:

$$F_{3am} = K_{3am}F$$
,

где K_{3am} — коэффициент затяжки (из условия нераскрытия

- при постоянной нагрузке $K_{3am} = 1,25...2$,
- при переменной $K_{3am} = 2,5...4;$
- из условия герметичности при мягкой прокладке $K_{3am} = 1, 3...2, 5$,
- при металлической фасонной прокладке $K_{sam} = 2...3,5$,
- при металлической плоской прокладке $K_{3am} = 3...5$).

Условие прочности болта при статической нагрузке:

$$\sigma_e = \frac{1,3F_p \cdot 4}{\pi d_1^2} \le \left[\sigma\right].$$

(Коэффициент 1,3 учитывает напряжения кручения).

Расчеты прочности болта при переменной нагрузке

$$s = \frac{\sigma_{-1}}{\sigma_a K_{\sigma} + \psi_{\sigma} \sigma_m} \ge [s],$$

где σ_{-1} – предел выносливости материала болта;

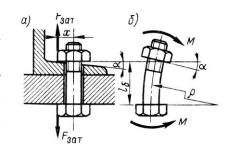
 K_{σ} – коэффициент концентрации напряжений в резьбе;

 $\psi_{\sigma} \approx 0,1$ – коэффициент чувственности к асимметрии цикла напряжений;

 σ_m – постоянное напряжение в болте

$$\sigma_m = \frac{F_{3am} + \frac{F_{\tilde{0}}}{2}}{A_{\tilde{0}}};$$

 σ_a – амплитуда переменной нагрузки


$$\sigma_a = \frac{F_{\tilde{0}}}{2A_{\tilde{0}}}$$
.

На практике значения затяжки болтов не контролируют, и для приблизительных расчетов принимают $\chi = 0, 2 \dots 0, 3$. Тогда

$$F_{\tilde{o}} = (0, 2...0, 3)F$$

 $F_p = F_{3am} + (0, 2...0, 3)F$.

Эффект эксцентричного болта

Эксцентричная нагрузка возникает в случаях непараллельности опорных поверхностей детали и гайки или головки болта. Кроме напряжений растяжения возникают напряжения изгиба и эксцентричная нагрузка может в значительной мере уменьшить прочность болта.

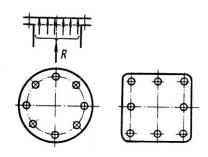
Меры, позволяющие устранить эксцентричную нагрузку:

- планирование неравных поверхностей;
- подкладывание под гайку косую шайбу и т.п.

Расчеты соединений, включающих группу болтов

Расчеты приводится к определению расчетной нагрузки для наиболее нагруженного болта.

Предположение:


- поверхности стыка остаются плоскими;
- поверхности стыка имеют минимум две оси симметрии, а болты расположены симметрично относительно этих осей;

• все болты одинаковы и одинаково втянуты.

Равнодействующая нагрузка перпендикулярна плоскости стыка и проходит через его центр тяжести

Типичный случай соединения круглых и прямоугольных крышек, нагруженных давлением жидкости или газа. При этом болты затягивают, чтобы обеспечить плотность соединения. Все болты соединения нагружены одинаково.

Внешняя нагрузка, которой приходится на один болт:

$$F=\frac{R}{z}$$
,

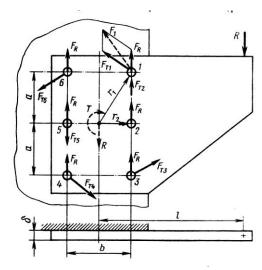
где z — число болтов.

Расчетная нагрузка болтов определяется

$$F_P = F_{3am} + F_{6}$$
$$F_{3am} = K_{3am}F$$

или приблизительно

$$F_{o} = (0, 2...0, 3)F$$


$$F_{p} = F_{3am} + (0, 2...0, 3)F.$$

Нагрузка соединения сдвигает детали в стыке

Пример: крепление кронштейна. При расчетах силу заменяют такой же силой, приложенной в центре тяжести стыка, и моментом T=Rl. Нагрузка от силы R распределяется по болтам равномерно

$$F_R = \frac{R}{z}$$
. Нагрузка от момента

распределяется по болтам пропорционально их деформациям при повороте кронштейна, пропорционально расстояниям болтов от центра тяжести стыка, являющимся центром поворота.

Суммарная нагрузка каждого болта равна геометрической сумме сил F_R и F_T . За расчетную нагрузку принимают наибольшую из суммарных нагрузок.

Болты поставлены без зазора

Нагрузка воспринимается непосредственно болтами. Прочность болтов и деталей рассчитывается по напряжениям среза и смятия.

$$\tau = \frac{4F}{\pi d^2 i} \leq \left[\tau\right]$$
 для средней детали
$$\sigma_{c_{\mathcal{M}}} = \frac{F}{d\delta_2} \leq \left[\sigma_{c_{\mathcal{M}}}\right],$$
 для крайней детали
$$\sigma_{c_{\mathcal{M}}} = \frac{F}{2d\delta_1} \leq \left[\sigma_{c_{\mathcal{M}}}\right].$$

Болты поставлены с зазором

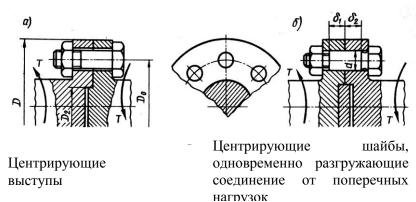
Нагрузки воспринимаются силами трения в стыке, для образования которых болты затягивают. Приблизительно считают, что равнодействующая сил трения приложена к центру соответствующего отверстия.

Соединение будет прочным (детали не сдвинутся), если равнодействующая сил трения под каждым болтом не меньше, чем соответствующая равнодействующая сил F_R и F_T .

Болты затягивают одинаково с затяжкой:

$$F_{3am} = \frac{KF_{\text{max}}}{f},$$

где K = 1,3...2 — коэффициент запаса;


 $F_{\rm max}$ — сила, приходящаяся на наиболее нагруженный болт;

f – коэффициент трения в стыке деталей.

Прочность болтов:

$$\sigma_e = \frac{1.3F_{3am} \cdot 4}{\pi d_1^2} \le \left[\sigma\right].$$

Фланцевое соединение валов.

Расчетная нагрузка на болтах, поставленных без зазора

$$F = \frac{2T}{zD_0}.$$

Необходимая сила затяжки болтов, поставленных с зазором:

$$F_{3am} = \frac{2KT}{zD_0 f} .$$

Нагрузка соединения раскрывает стык деталей

Пример: крепление кронштейнов, стоек и т.п. Силу R раскладываем на составляющие R_1' и R_2' , действие которых заменяют действием сил R_1 и R_2 , приложенных к центру стыка, и действием момента

$$M = R_2 l_2 - R_1 l_1.$$

 R_1 и M раскрывают стык, в R_2 сдвигает детали. Возможность раскрытия стыка и сдвига деталей устраняется затяжкой болтов с силой F_{3am} .

Расчеты из условия нераскрытия стыка.

До приложения нагрузки R затяжка в стыке образовывалась напряжениями смятия:

$$\sigma_{3am} = \frac{F_{3am}z}{A_{cm}},$$

 A_{cm} — площадь стыка.

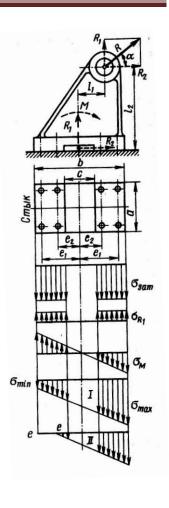
Сила R_{l} растягивает болты и уменьшает $\sigma_{\mathit{заm}}$ на

$$\sigma_{R_{\rm l}} = \frac{R_{\rm l}}{A_{cm}} (1 - \chi) \approx \frac{R_{\rm l}}{A_{cm}}.$$

Из условия нераскрытия стыка, осью поворота считают ось симметрии. Напряжения в стыке от действия момента меняется соответственно эпюре момента.

Вариант I – нераскрытие стыка

Вариант II – на участке ее стык раскрывается, что недопустимо.


Из условия нераскрытия стыка:

$$\sigma_{3am} = K \Big(\pm \sigma_{R_1} + \sigma_M \Big),$$

где $K \approx 1,3...2$ — коэффициент запаса по нераскрытию стыка.

В случаях, когда материал деталей малопрочный по сравнению с материалом болтов, необходимо проверять условие прочности деталей по максимальным напряжениям смятия.

$$\sigma_{\max} \leq [\sigma_{\scriptscriptstyle 3M}].$$

Расчеты из условия отсутствия сдвига деталей стыка (проверочный)

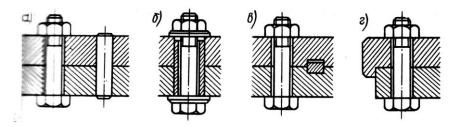
Условие отсутствия сдвига в стыке (сила R_2 уравновешивается силами трения):

$$(F_{3am}z\pm R_1)f\geq K'R_2,$$

где f – коэффициент трения в стыке;

K' ≈ 1,3...2 — коэффициент запаса.

Если условие отсутствия сдвига не выполняется, это означает, что условие нераскрытия стыка не является решающим и затяжку нужно определять из условия отсутствия сдвига


$$F_{3am} = \frac{K'R_2 \mp R_1 f}{fz}$$

или ставить болты без зазора.

При больших нагрузках сдвига применяют специальные устройства, разгружающие стык (болты ставятся с зазором и воспринимают только раскрывающую стык нагрузку):

- а) штифты;
- б) втулки;
- в) шпонки;
- г) упоры.

Расчеты прочности болтов

Учитывается наибольшая силу затяжки F_{3am} .

Суммарная внешняя нагрузка

$$F = F_M \pm F_{R_1},$$

где F_{R_1} – внешняя нагрузка, приходящаяся на один болт от силы R_1

$$F_{R_1} = \frac{R_1}{z},$$

 F_{M} — внешняя нагрузка от момента M

$$F_M = \frac{Me_1}{i(2e_1^2 + 2e_2^2 + \dots + 2e_n^2)}.$$

Материалы

- Сталь Ст3
- Низкоуглеродистые стали (сталь 10 ... сталь 35) для стандартных крепежных деталей (изготовление методом холодной высадки или штамповки с последующей накаткой резьбы);
- Легированные стали (35X, 30ГСА) для высоконагруженных деталей при переменных или ударных нагрузках, высоких температурах, в агрессивных средах.

Для повышения прочности, коррозийной устойчивости, жаропрочности применяют специальные виды термической и химико-термической обработки, нанесение гальванических покрытий, например, улучшение, цинковое или кадмиевое хромирование, хромовое или медное покрытие и т.п.

Допустимые напряжения и запасы прочности

Вид нагрузки	Рекомендуемые значения
Растягивающая внеш- няя нагрузка: без чатяжки болтов	 $[\sigma] = 0.6\sigma_{\mathrm{T}}$
	Статическая нагрузка: [n] по табл. 1.3— неконтролируемая затяжка; [n] = 1,2 ÷ 1,5 — контролируемая затяжка
с затяжкой болтов	Переменная нагрузка: $\begin{bmatrix} n_r \end{bmatrix} \ge 2.5 \div 4 \\ [n]$ по табл. 1.3 $\}$ неконтролируемая затяжка; $\begin{bmatrix} n_r \end{bmatrix} = 1.5 \div 2.5 \\ [n] = 1.2 \div 1.5 \end{bmatrix}$ контролируемая затяжка
Поперечная внешняя нагрузка: болты цоставлены с за- зором	Нагрузка статическая или переменная: [n] по табл. 1.3— неконтролируемая затяжка; [n] = 1,2 ÷ 1,5 — контролируемая затяжка
болты ноставлены без зазора	$[\tau] = 0.4\sigma_{\rm T}$ (статическая); $[\tau] = (0.2 \div 0.3) \sigma_{\rm T}$ (переменная)
	$[\sigma_{cm}] = 0.8\sigma_{T} - \text{сталь};$ $[\sigma_{cm}] = (0.4 \div 0.5) \sigma_{B} - \text{чугун}$
Прочность деталей в стыке	$[\sigma_{\text{см}}] = 0,8\sigma_{\text{T}} - \text{сталь};$ $[\sigma_{\text{см}}] = 0,4\sigma_{\text{B}} - \text{чугун};$ $[\sigma_{\text{см}}] = 10 \div 20 \text{ кгс/см}^2 \approx 1 \div 2 \text{ МПа} - \text{бетон};$ $[\sigma_{\text{см}}] = 20 \div 40 \text{ кгс/см}^2 \approx 2 \div 4 \text{ МПа} - \text{дерево}$

Таблица 1.3 Значения коэффициента запаса прочности [n] при расчете болтов с неконтролируемой затяжкой

Материал болта	Постояниа: при	я нагрузка ı d	Переменная нагрузка от 0 до <i>Р</i>	
	M6 — M16	M16 - M30	M6 — M16	M16 — M30
Углеродистая сталь	5—4 6,5—5	4—2,5 5—3,3	12—8,5 10—6,5	8,5 6,5

Допускаемая нагрузка [$P_{ m p}$], кгс			
контролируемая затяжка			
300			
550			
860			
1220			
2350			
3700			
5300			
8500			

Предел прочности σ _в , кгс/см²	Предел текучести	Предел выносливости $\sigma_{-1}p$, кгс/см ²
3400	2000	1600
4000	2400	1700
5000	3000	1800
6000	3600	2400
8000	6400	2800
10 000	9000	3000